I GIS e l'Open Source

Struttura del seminario:

- 1. Concetti introduttivi;
- 2. GRASS GIS: istallazione;
- 3. Gestione del dato vettoriale;
- 4. Gestione del dato raster;
- 5. Digitalizzazione del dato vettoriale;
- 6. Applicazioni all'analisi di bacino.

L'esercizio si svolgerà all'interno della location UTM, Gauss-Boaga Roma40 che abbiamo creato nella lezione 2.

IMPORTANTE! Quando entrate in GRASS fate attenzione ad entrare sempre in un mapset che sia diverso da "PERMANENT"!!! ad esempio, in questo caso possiamo usare il "**nuovo_mapset**" creato sempre nella lezione2.

Come esercizio di importazione di dati raster, scarichiamo dapprima un dato da internet all'indirizzo: http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp

The CGIAR Consorti	um for Spatial Inforr ing GeoSpatial Scienc for a Sustainable	nation (CGIAR-CSI) Future			
SRTM Data Selection	1 Options				
1 Select Server:	💭 King's College (UK)	O Harvestiltraiae (USA)	JRC (IT)	C COLAR (CSI (USA)	TelaSolanos (USA)
2 Data selection method.	🔍 Muttiple Selection	Enable Mouse Drag	D Input Coordinates		
Many mes can be selected a	transform for ations. These set	extent tiles are littled in the results pag	e for downipart.		
	🥌 Decimal Degrues (le 34	5100.5	🛞 Degrees Minutes Sec	ands (16 34 30 00 N 100 30 00 W	91
	Longitude - min:	max: Longitude - min		East • max	
	Latitude - min:	max: Lifitude - min:		Bott • max	Hett +
	Longitute: -32.61 Lat	rude) 40.66 Tile X	30 Tile Y: 3	die au	Riez .
3 Select File Format	🤤 GeoTiff	C Autinfe ASCII			Click here to Begin Search >>

Dall'interfaccia grafica del sito selezioniamo col mouse il quadratino che contiene l'Italia Centrale e scarichiamo la mappa.

Entriamo in GRASS, Location=Gauss_Boaga, Mapset=nuovo_mapset

Di tutti i files scaricati importiamo il file .tif tramite **r.in.gdal**. Quindi, andiamo su 'file > import raster map > import raster data using GDAL'

The CGIAR Consort	ium for Spatial Inforn	nation (CGIAR-CSI)								
Apply	ring GeoSpatial Science for a Sustainable	Future		🔍 r.in.gdal (raste	r, import)					000
SRTM Data Selection	n Options			🥑 Import GDAL	supported ra	ster file i	nto a binary	raster map layer.		
1 Select Server:	C King's College (UK)	Harvest() froice (USA)	(TT) DRL (0)	Required	Metadata	Print	Optional	Command output	Manual	13×
2 Data selection method.	🔍 Muttiple Selection	🕗 Enable Mouse Drag	Input Coordinates	Raster file to be i	mported:					
Many mes can he sujected	at random instations. These set	extent tiles are lident in the results par	ge far download.	/home/annalisa	Scrivania/srtr	n_39_04.	tif			Browse
	Lengitude - min:	rs100.5) max Longitude - min max Latitude - min rude 40.65 Tile X	Degrees Minutes Seconds 20 Tile Y 3	Name for output	raster map:					
3 Select File Forms	GioTiff	C - Aukinde ASCII		Add created n	Dose (nap into layer in finish =/home/annal	district tree	<u>Bun</u>	04.tif output=dem	Help	
7 8 9 10	N.			VN	S &			aner augus delle		

Scegliamo il percorso e spuntiamo l'opzione (anche qui come nell'importazione del dato shp) '**Override projection'**... al fine di fornire in automatico al dem lo stesso sistema di riferimento della location su cui stiamo lavorando... dopodichè clicchiamo su run e proiettiamo in visualizzazione il dato tramite il comando d.rast (layer manager)

Una volta visualizzato il dem così importato, settiamoci con la regione su una data parte del dem stesso: ad esempio la zona di Gubbio (in alto a dx sulla mappa):

- Impostiamo la regione con **g.region** sulla mappa raster di tutto il dem;
- zoom sulla zona specifica (Map Display);
- "set region from display" dalle zoom options del Map Display.

Una volta visualizzato il dem così importato, settiamoci con la regione su una data parte del dem stesso: ad esempio la zona di Gubbio (in alto a dx sulla mappa):

• Impostiamo la regione con **g.region** sulla mappa raster di tutto il dem;

• **zoom** sulla zona specifica (Map Display);

• "set region from display" dalle zoom options del Map Display.

Una volta visualizzato il dem così importato, settiamoci con la regione su una data parte del dem stesso: ad esempio la zona di Gubbio (in alto a dx sulla mappa):

- Impostiamo la regione con **g.region** sulla mappa raster di tutto il dem;
- zoom sulla zona specifica (Map Display);
- "set region from display" dalle zoom options del Map Display.

A questo punto ipotizziamo di voler istallare una rete di pluviometri intorno Gubbio e creiamo una ipotetica mappa dei pluviometri generando punti raster in maniera random.. quale comando dovremo usare?

v.random!

Creiamo 10 pluviometri.

Una volta generati i pluviometri, se proviamo ad interrogare la mappa vettoriale (puntatore in modalità non editabile, sul display manager), vediamo che i punti hanno ancora solo un paraemtro (Category) e nessuna connessione col database. Creiamo una tabella nel database relativa al file vettoriale tramite il modulo **v.db.addtable** impostiamo tre colonne: cat integer, pioggia double, quota double.

Se ora andiamo a interrogare il vettoriale pluviometri, possiamo vedere che la connessione col database è stata definita ma nelle colonne "pioggia" e "quota" evidentemente non c'è nulla.

Interrogando ora la mappa dei pluviometr in modalità edit (display manager), riempiamo la colonna "pioggia" del file vettoriale, inserendo valori casuali per i millimetri di pioggia registrati. Una volta finito usciamo dalla modalità edit ed entriamo nell'attribute table manager: possiamo verificare dia ver riempito tutta la colonna pioggia, altrimenti selezioniamo la riga inq uestione ed editiamo gli attributi dalla tabella stessa.

GRASS GIS Map Display: 1 - Location: GAUSS_BOAGA_EST	-	GRASS G	IS Attribute Table Manager - <random@alviano></random@alviano>	2 B X
🗢 📷 🥜 🔨 🍋 🛆 🛆 📥 📥 📩 20 vie		Tellin combern		4.4.8
Query raster/vector map(s) (display mode)	Attribu	te data - right-click	to edit/manage records	
n ar Query Vector Inop fedic model	cat 💡	pioggia	quota	
	1	15,0		
	2	18.0		
🔿 Undare attributes 🔅 🗶	3	20.0		
	4	30:0		
Layer 1 / Category 6	5	14.0		
pioggia (double precision) :	6	10.0		
	/	28.0		
(doute fuerration):	8	33,0		
	10	22.0		
	4.0	5.4. · W		
		A-141		
	SQL OL	ery		
	C Sim	ple SELECT FR	ROM random WHERE cat.	💎 Apply
Feature id: 6				
🖬 Close dialog on submit	Adv	anced		
Reload 🔀 Cancel Submit	1	(prosector)		
		Manage a	ables Manage layers:	
				Solution of the second
	Number	of loaded records	10	
Coordinator	STUDIO		40 ⁰	

Ci manca di inserire le quote.

Se per caso ci fossimo stancati di inserirle manualmente possiamo chiedere a GRASS di leggerle per noi dal dem sottostante e di inserirle automaticamente nella tabella: il comando è v.what.rast

v.what.rast (vector, raster, attribute table) _ = × Volume X = × Volume X = x = x	GRASS GIS Layer File Config Raster	Manager (Experimental Prototype) - Vector Imagery Volumes Database	Help
Regulation Optional Command output: Manual A		Develop vector map Manage colors	> > • • •
Name of input vector points map for which to edit attribute table:	₩ random@alvi	Query with attributes Query with coordinate(s) Query with another vector man	
Name of existing raster map to be queried: dem.		Buffer vectors	5
Column name (will be updated by raster values): quota	Š	Linear referencing Nearest features	=
		Network analysis Overlay vector maps	2
	Cmd > v.what.rast	Generate area for current region	(D
🔀 Close 🔹 Bun 📑 Copy 📑 Help	v.what.rast = Uolbads (Generate grid Generate points	>
Close dialog on finish		Remove outliers in point sets Test/training point sets	
	l.Render	Update area attributes from raster Update point attributes from areas	
Sample raster nei	ps at point locabons ghborhood around points	Reports and statistics	> ~

Dopo aver eseguito il comando reinterroghiamo la mappa vettoriale e vediamo che ora le quote sono immagazzinate nella tabella (controllare nell'attribute table manager!!!).

Ripasso della puntata precedente:

Ora supponiamo di voler estrarre tutti e soli quei pluviometri posti a quota maggiore di 550mslm.. quale comando dovremmo usare? ..fare!!!

^	GRASS	GIS Attribute Table Manager - <random@alviano></random@alviano>	27 ID X				
	OTHER OTHER		4.4.8				
Attribu	ite data - right-cli	ck to edit/manage records	į				
cat.	pioggia	quota					
1	15.0	650.0					
2	18.0	550.0					
3	20.0	672.0					
4	30.0	553.0					
5	14.0	488.0					
6	10.0	575.0					
7	28.0	413.0					
8	33.0	625.0					
9	25.0	387.0					
10	22.0	608.0					
			_				
SOL O	nple SELECT *	FROM random WHERE cat.	💎 Apply				
Ad	Advanced						
	Manage tables Manage layers						
Number	lumber of loaded records: 10						

Per riproiettare un dato da un sistema di riferimento ad un altro in GRASS, BISOGNA DISPORRE DELLE **LOCATION** TRA CUI ESEGUIRE L'OPERAZIONE DI RIPROIEZIONE: Se volessi riproiettare un dato da un sistema di riferimento 'GB roma40 fuso est' ad 'UTM ED50 fuso 33', bisogna come prima cosa crearsi (se non già a disposizione) la location (ed il mapset) all'interno della quale dobbiamo riproiettare il dato.

Per chi usa linux il comando è: **r.proj** (per i raster) e **v.proj** (per i vettoriali)

La riproiezione 'concettualmente' avviene in questo modo:

1) Mi metto all'interno del mapset della location creata nel sistema di riferimento verso cui devo riproiettare il dato;

2) *da qui* eseguo il comando di riproiezione.

Cioè non dico "riproietto il dato **verso** un sistema di riferimento"

bensì:

"riproietto il dato IN questo sistema di riferimento DA un altro"

GRASS GIS Map Display: 1 - Location: GALISS	BOAGA_EST - 🗆 🛠	GRASS GIS Map Display: 1 - Location: ED	50_Z33 = 🗆 🗙
• m, - N 10 10 10 10 10 10 10 10 10 10 10 10 10	2D viev	🗢 🛤 🛩 🔨 🍃 🖉 🖉 🥷 🥀	🤰 🐁 🔚 🎽 20 vi
:32 ⁰ .			
*			
*			
ŝ.	3 6		
	*		
*			
Development and		22222 AT 25 1 2222 AT 2 2 2	
2339796.64, 4830711.76	Coordinates 0 10 Bender	2522092.59, 9785718.20	Coordinates 🥪 Render

A Sinistra La location che contiene i dati (UTM GB Roma40, fuso est); mentre a destra la location (UTM ED50 Zona33) entro cui riproiettare il dato

Da dentro la location (ED50) digitare v.proj dalla command line o seguire il percorso: 'vector' > 'develop vector map' > 'reproject vector map'

Create new vector map	Develop varrer map	- 21
Edit vector map (non-interactively)	Manage colors	<u>></u>
Create or rebuild topology	Query with attributes	
Clean vector map	Query with coordinate(s)	
Smooth or simplify	Query with another vector map	
Convert object types	Buffer vectors	
A did combostide	Lidar analysis	2
PARTERNEE	Linear referencing	\rightarrow
Build polylines	Nearest features	
Split polylines	Network analysis	>
Parallel lines	Overlay vector maps.	\rightarrow
Dissolve boundaries	Change attributes	2
Create 3D vector over raster	Generate area for current region	
Extrude 3D vector map	Generate areas from points	- X -
Link to DCB	Generate grid	
LINK SOOK	Generate points	\rightarrow
Create labels	Remove outliers in point sets	
Reposition vector map	Test/training point sets	
Reprojecti Vettori (maj)	Update area attributes from raster	
	Update point attributes from areas	

Required	Land Continued	conmanaroa qua:	manual	41	×
ication contair	ang input vector me	D::			
Trees			_		
					_
			C .		
		1			
Ī					
	Inserire i	l nome de	ella locati	on	
	che	contiene	il dato		
<u>.</u>					ſ
	. Sime	Dum:	l čena i	1	
Channel	and the second se	840	100V	rieip	

🔹 v. proj [vector , projection]	
Allows projection conversion of vector maps.	
Required Optional Command output Manual 8 IP ->	Inserire il nome dei file vettoriale
List vector maps in input location and exit Assume z co-ordinate is ellipsolidal height and transform if possible Allow output files to overwrite existing files	da riproiettare
Verbose module output Quiet module output	
Name of input vector map:	-10
Mapset containing input vector map:	Inserire il nome del mapset
Path to GRASS database of input location:	entro cui il file si trova
Name for output vector map:	
	i i
	Inserire il nome con cui vogliamo salvare il file riproiettato
Close Stop Run Copy Help	
Add created map into layer tree	
Close dialog on Finish	
v.pro) location= <required></required>	

A QUESTO PUNTO IL DATO PUO' ESSERE RIPROIETTATO CORRETTAMENTE NEL NUOVO SISTEMA DI RIFERIMENTO.

LE OPERAZIONI VISTE SIN QUI CON IL FILE VETTORIALE, VALGONO ANCHE PER I FILES RASTER.

Per **esercizio** riproiettare il file vettoriale della rete di pluviometri che abbiamo appena generato con v.random **dalla** location UTM, Gauss-Boaga Roma40 **alla** location (creata ed utilizzata nella lezione 3) UTM, ED50 Zona33.

Quest'opera è stata rilasciata sotto la licenza Creative Commons Attribuzione Stessa Licenza 2.5

Copyright© GFOSSERVICES S.A. 2009

annalisa.minelli@gmail.com

Attribuzione - Condividi allo stesso modo 2.5 Italia

Tu sei libero:

di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire e recitare quest'opera

di modificare quest'opera

di usare quest'opera per fini commerciali

Alle seguenti condizioni:

Attribuzione. Devi attribuire la paternità dell'opera nei modi indicati dall'autore o da chi ti ha dato l'opera in licenza.

Condividi allo stesso modo. Se alteri o trasformi quest'opera, o se la usi per crearne un'altra, puoi distribuire l'opera risultante solo con una licenza identica a questa.

Ogni volta che usi o distribuisci quest'opera, devi farlo secondo i termini di questa licenza, che va comunicata con chiarezza.

In ogni caso, puoi concordare col titolare dei diritti d'autore utilizzi di quest'opera non consentiti da questa licenza.

Le utilizzazioni consentite dalla legge sul diritto d'autore e gli altri diritti non sono in alcun modo limitati da quanto sopra.

Questo è un riassunto in linguaggio accessibile a tutti del Codice Legale (la licenza integrale). Limitazione di responsabilità