

Sistemi di riferimento

Paolo Dabove, Stefano Campus, Federico Gianoli

Sistemi di riferimento

SISTEMA DI COORDINATE	COMPONENTI	QUANDO USARLE
Geografiche	 Misure angolari (gradi) Un meridiano 0 di riferimento DATUM (basato sulla sfera) 	 Per immagazzinare dati in un database centrale, permettendo agli utenti di applicare la proiezione che gli interessa Per fare una mappa velocemente Quando non è necessario preservare forme, area, distanza e direzione. Quando non bisogna fare interrogazioni spaziali basate sulla posizione o sulle distanze
Proiettati	Misure metriche Punto di origine (0,0) Proiezione della mappa (cilindrica, conica, etc.)	 Per fare mappe in cui bisogna preservare forma, area, distanze, direzioni (es. mappe di navigazione) Per calcolare accuratamente le distanze e le misure Per fare mappe a piccola scala Per analisi GIS: Per fare queries spaziali Per calcolare direzioni, aree e distanze. Per l'editing GIS: Per creare geometrie corrette per nuovi elementi disegnati. Per mantenere geometrie corrette nelle modifiche di geometrie esistenti.

Table 1. Resolution equivalents in seconds, minutes, degrees, and kilometers

Minutes (min) and seconds (sec)	Degrees (deg)	Kilometers (km)
30 sec	0.008333 deg	~ 1 km
2.5 min	0.041667 deg	~ 5 km
15 min	0.25 deg	~ 30 km
30 min	0.5 deg	~ 55 km
50 min	1 deg	~ 110 km

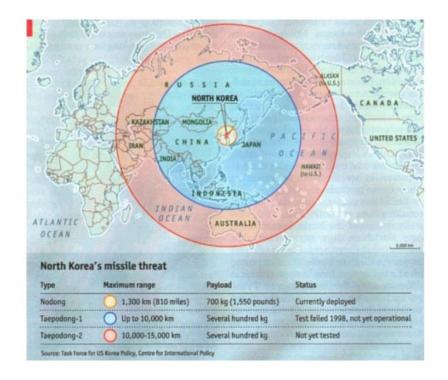
Sistemi di riferimento (SR)

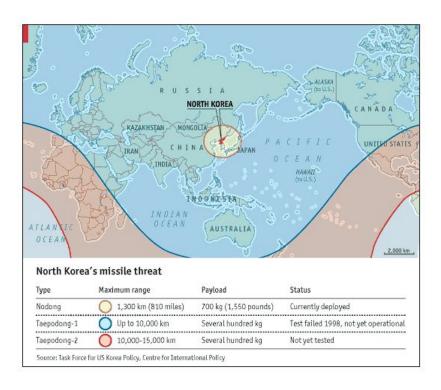
Per agevolare l'assegnazione ai dati del loro sistema di riferimento, è stato creato un indice che raccoglie tutti sistemi riferimento utilizzati nel mondo. Ad ognuno di questi sistemi è stato assegnato un codice univoco. L'utilizzo di questo codice facilita l'assegnazione del sistema di riferimento al dato. L'elenco completo degli EPSG lo si può trovare sul sito: http://spatialreference.org nella tabella seguente ho riportato alcuni tra i sistemi di riferimento che utilizzo di più per lavorare su dati in Italia.

EPSG = European Petroleum Survey Group

EPSG CODE	NAME	NOTE
3857	Pseudo Mercator	Usata per webgis, google earth, BING, etc.
3003	Monte Mario Fuso 32 - Ovest	Italia
3004	Monte Mario Fuso 33 - Est	Italia
32632	WGS84 UTM 32N	Italia
32633	WGS84 UTM 33N	Italia
23032	ED50 UTM 32N	Italia
23033	ED50 UTM 33N	Italia
4326	WGS84	GEOGRAFICA
6707	ETRF2000 Fuso 32	Italia
6708	ETRF2000 Fuso 33	Italia

Input Coordinates: 9.325, 27.925 Output Coordinates: 1531978.371908, 3088980.248334


EPSG:3003


Monte Mario / Italy zone 1 (Google it)

- WGS84 Bounds: 6.6500, 8.8000, 12.0000, 47.0500
- Projected Bounds: 1241482,0019, 973563,1609, 1830078,9331, 5215189,0853 Scope: Large and medium scale topographic mapping and engineering survey.
- Last Revised: May 27, 2005 Area: Italy - west of 12°E
- Well Known Text as HTML
 Human-Readable OGC WKT

- MapServer Mapfile | Python
 Mapnik XML | Python

Errori con le proiezioni: il caso dell'Economist

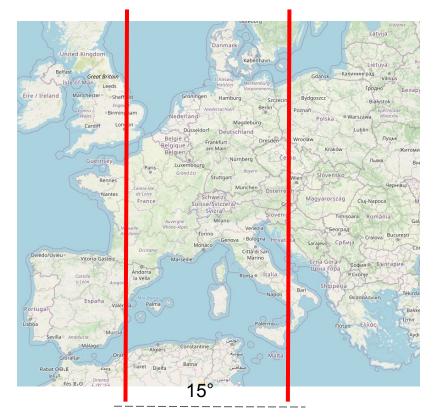
Curiosità:

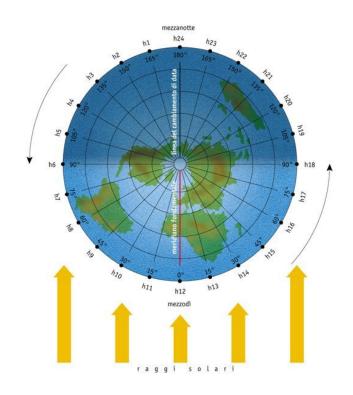
Nel 1714 il Parlamento inglese offrì una ricompensa di ventimila sterline in oro (l'equivalente di 10 milioni di euro) a chi avesse scoperto come determinare la longitudine di una nave nell'oceano.

A riscuotere il premio fu John Harrison che nel 1759 costruì un cronometro (l'H5) in grado di segnare sempre l'ora esatta, quella di Londra per esempio, e un semplice confronto con l'ora locale avrebbe istantaneamente fornito la longitudine della nave.

L'H5 viaggiò con il capitano James Cook che dopo tre anni di navigazione (1772-1775) si espresse entusiasticamente

John Harrison

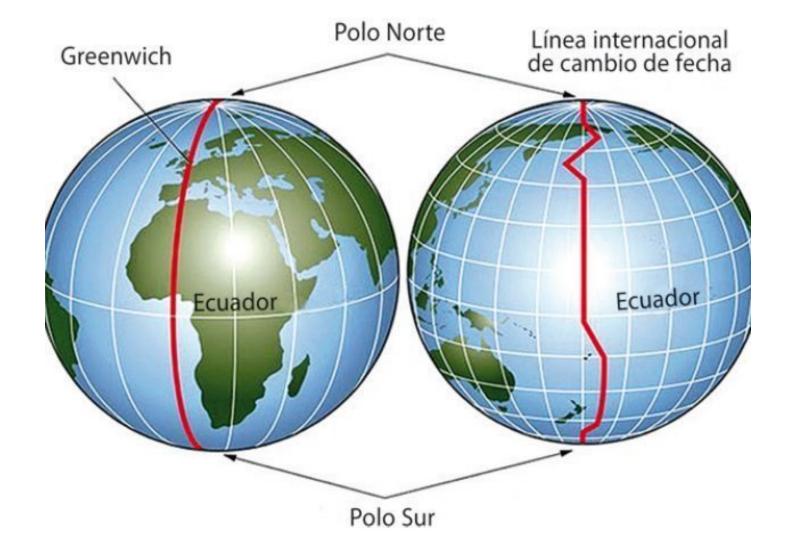



James Cook

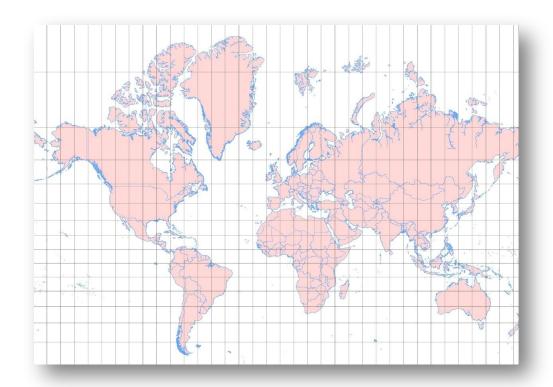
H5

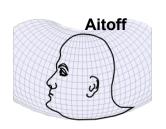
Con la rotazione terrestre, l'ora locale, stabilita riferendosi alla posizione del Sole, varia a seconda della longitudine.

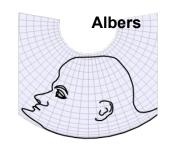
Ogni ora il Sole si "sposta" di 15° di longitudine

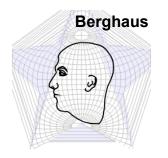

1° = circa 111 Km, 15° = circa 1665 Km

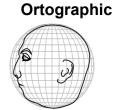
Meridiano 0

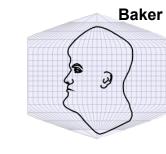


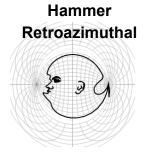

Dalla sfera al piano

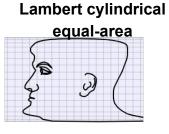

Non si può appiattire una sfera

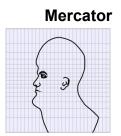




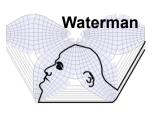


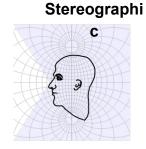






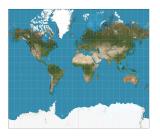
August





http://bl.ocks.org/vlandham/raw/9216751/

Polyconic


thetruesize.com

La proiezione può rispettare o la proporzionalità delle distanze, o l'equivalenza delle aree, o i valori degli angoli della superficie sferica (dipende dall'uso della carta).

- Isogonia o conformità= conserva sulla carta gli angoli formati dall'intersezione tra meridiani e paralleli (90°). Non sono rispettate le proporzioni tra distanze. Usate per le carte nautiche.
- Equivalenza= mantiene la proporzione delle aree sulla carta con quelle della superficie terrestre. Si mantengono inalterati i rapporti tra le aree ma non le forme delle figure. Usate per le carte a uso didattico.
- Equidistanza= le distanze misurate sulla carta sono proporzionali a quelle misurate sul terreno.

Proiezione di Mercatore

Equivalente di Lambert

Conica equidistante

Gerardo Mercatore

U.S.

La Lossodromia è il cammino che la nave percorre per recarsi da un punto ad un altro servendosi della bussola. Nella proiezione di Mercatore le Lossodromiche sono linee rette, pertanto è una proiezione perfetta per la navigazione.

