3.4.1.3 Classificare i dati con il metodo del natural breaks

Ipotesi:

- Dati nella cartella ECDLGIS SYLLABUS (percorso: C:\GISeQGIS DATI\ECDLGIS SYLLABUS)
- Progetti presenti nella cartella PG ECDLGIS SYLLABUS (percorso: C:\GISeQGIS PROGETTI\PG ECDLGIS SYLLABUS)

Carichiamo il progetto PG_SYL_Intervalli_Costanti_e_Deviazione_Standard (progetto creato in ES_SYL_3_4_1_1 Classificare i dati con i metodi degli intervalli costanti e della deviazione standard contenuto nella cartella C:\GISeQGIS_ESERCIZI\ECDLGIS_SYLLABUS)

Rimuoviamo i layer **Graduato 1991 intervalli uguali 25 classi** e **Graduato 1991 deviazione standard 19 classi**, apriamo la tabella attributi di Comuni_1991_2011 i cui campi a seguito di join con COMUNI_DATI e di calcolo dell'area dei comuni e della densità di popolazione degli stessi ha nel progetto i seguenti campi:

Q Proprietà Layer — COMUNI_1991_2011 — Campi ×												
٩												
🥡 Informazioni 📍	Id 🔺	Id 🔺 Nome Alias		Tipo	Nome tipo	Lunghezza	Precisione	Commento	Configurazione			
Sorgente	abc ()	ISTAT1991		Testo (stringa)	String	16	0		-			
	abc 1	NOME		Testo (stringa)	String	50	0		Ψ.			
🐳 Simbologia	123 2	PRO1991		Intero (32 bit)	Integer	5	0		-			
(abc) Etichette	123 3	PRO2011		Intero (32 bit)	Integer	5	0		-			
(Abc) Maschere	• 4	POP_1991		Intero (32 bit)	integer	0	0		•			
🔶 Vista 3D	• 5	POP_2011		Intero (32 bit)	integer	0	0		•			
Diagrammi	• 6	ALT_MIN		Intero (32 bit)	integer	0	0		•			
	• 4 7	ALT_MAX		Intero (32 bit)	integer	0	0		•			
Campi	8 3	Area_kmq		Decimale (doppia precisione)	double precision	-1	0	E round((\$area /1000000),2)	-			
🔡 Modulo Attributi	63	den_1991		Decimale (doppia precisione)	double precision	-1	0	E round(("POP_1991" / "Area_kmq"),2)	•			
Join	St	tile •						OK Annulla Applica	Aiuto			

dove i campi con sfondo verde chiaro e azzurro chiaro sono temporanei a livello di progetto in corso.

Vedere nel precedente esercizio ES_SYL_3_4_1_1 Classificare i dati con i metodi degli intervalli costanti e della deviazione standard le considerazioni sui dati, la loro distribuzione e le statistiche.

Vogliamo Classificare i dati con il metodo degli intervalli naturali in 25 classi utilizziamo la simbologia Graduato Layer (Barra dei Menu) ► Proprietà... ► Simbologia ► Graduato e scegliamo Valore den_1991 Modalità Cintervalli Naturali (Jenks) Classi 25 e Scala colore Spectral invertita. L'algoritmo Natural Breaks (Jenks) – Intervalli Naturali - si propone di individuare dei raggruppamenti naturali dei dati per creare le classi di intervallo; i raggruppamenti generano classi in cui la varianza all'interno di ogni

RIFERIMENTO: www.QGIS.org - ECDLGIS Syllabus - 3.4 Carte tematiche - 3.4.1 Classificazioni tematiche dei dati - 3.4.1.3 Classificare i dati con il metodo del natural breaks

classe è minima, mentre quella tra le classi è massima; si ricorda che la varianza è una misura statistica che indica la distanza di un insieme di numeri dal loro valore medio, ovvero quanto i valori di quell'insieme si discostano dalla media. Risulta:

🔇 Proprietà Layer — Gra	aduato 1991 quar	ntili 25 classi —	- Simbologia										×
Q	😑 Graduato												Ŧ
🧃 Informazioni 📫	Valore	1.2 den_1991										-	3
Sorgente	Simbolo												-
🥳 Simbologia	Formato legenda	%1 - %2								ecisione(🕷	2	✓ Tron	са
	Scala colore												•
(abc) Etichette	Classi Istog	gramma											
abc Maschere	Simbolo 🔻 Va	alori	Legenda										
Yista 3D	7,	69 - 26,50 5 50 - 42 52	8 - 27 27 - 43										
Diagrammi	✓ 42 ✓ 42	2,52 - 58,10	43 - 58										
	✓ 58 ✓ 74	8,10 - 74,77 4,77 - 91,39	58 - 75 75 - 91										
Campi	✓ 91	1,39 - 110,75	91 - 111										
Modulo		10,75 - 132,32	111 - 132										
Attributi	V 16	51,32 - 194,32	161 - 194										
• Join	V 19	94,32 - 233,21	194 - 233										
	V 23	33,21 - 259,25	233 - 259										
Dati Ausiliari	✓ 25	59,25 - 293,42	259 - 293										
. Di Azioni	29	93,42 - 330,15	293 - 330										
••••	38	B3.23 - 411.86	383 - 412										
🤎 Visualizza													*
	Modalità	tervalli Naturali (Jenks) 🔻							C	Classi	25	-
Visualizzazione	Classifica	+	Elimina Tutto									Avanzato	¥
U Temporale	✔ Collega i confi	ìni della classe											
🗧 Variabili	Visualizzazi	ione Layer											
	Stile *						ſ	OK	Annulla	Applica		Aiuto	

nella legenda i valori vengono approssimati, scegliamo di mostrare accanto alle classi il numero di comuni la cui densità ricade nella classe:

Si nota una migliore distribuzione dei comuni tra le 25 classi di den_1991, come meglio visibile nella tabella a pagina seguente.

classe	min	max	intervallo	numero
1	7,69	26,50	6,16	56
2	13,85	42,52	3,90	30
3	17,75	58,10	2,84	36
4	20,59	74,77	54,19	24
5	74,77	91,39	16,62	16
6	91,39	110,75	19,36	10
7	110,75	132,32	21,57	10
8	132,32	161,32	29,00	10
9	161,32	194,32	33,00	9
10	194,32	233,21	38,89	16
11	233,21	259,25	26,04	11
12	259,25	293,42	34,17	7
13	293,42	330,15	36,73	6
14	330,15	383,23	53,08	9
15	383,23	411,86	28,63	3
16	411,86	480,44	68,58	5
17	480,44	548,38	67,94	5
18	548,38	616,10	67,72	6
19	616,10	756,03	139,93	5
20	756,03	896,23	140,20	2
21	896,23	1071,40	175,17	3
22	1071,40	1197,64	126,24	3
23	1197,64	1604,06	406,42	2
24	1604,06	1829,01	224,95	2
25	1829,01	3942,65	2113,64	1

In conclusione questo tipo di rappresentazione per Intervalli Naturali della distribuzione dei valori della den_1991 risulta essere più adatta delle rappresentazione precedenti (Intervalli Uguali, Deviazione Standard e Quantili).

Rinominiamo il layer COMUNI_1991_2011 in Graduato 1991 Intervalli Naturali 25 classi e salviamo le elaborazioni fatte • nel progetto PG_SYL_Intervalli_Naturali.qgz

• nella cartella C:\GISeQGIS PROGETTI\PG ECDLGIS SYLLABUS

risulta:

